$Nb_6I_{11}, ^{43}$ Ta_6Cl_{15}, ^{44} and Mo_6Cl_{12}. ^{45} \, Such differences, however, are not common to all cluster compounds. For example, in W₆Br₁₆⁴⁶ there are no differences between the average W-Br bond lengths for inner and outer Br ligands, and in $[Zr_2I_9]^{3-,47}$ where the ZrI_6 octahedra share faces, the differences are actually reversed. The overall average Re-P distances of 2.411 Å in Re_2P_5 and 2.421 Å in Re_6P_{13} are close to the average Re-P distance of 2.402 Å in ReP_4^8 and within the range of Re-P distances found in many molecular inorganic compounds.8,48

The P-P distances cover the range from 2.095 to 2.265 Å in $\operatorname{Re}_2 P_5$ (2.142 to 2.291 in $\operatorname{Re}_6 P_{13}$). To our knowledge the P(3)-P(8) distance of 2.095 Å is the shortest P-P distance found in any transition-metal polyphosphide. Even shorter P-P distances are observed sometimes in molecular compounds where they can be rationalized with some double-bond character.49

Planar, nearly equilateral rhomboidal clusters of metal atoms were found before in $C_{s}Nb_{4}Cl_{11}$,⁵⁰ in $[Re_{4}(CO)_{16}]^{2-,51,52}$ and in several heteronuclear molecular related compounds with

- (41) Koknat, F. W.; McCarley, R. E. Inorg. Chem. 1974, 13, 295.
 (42) Simon, A.; Schnering, H. G. v. J. Less-Common Met. 1966, 11, 31.
 (43) Simon, A.; Schnering, H. G. v.; Schäfer, H. Z. Anorg. Allg. Chem.
- 1967, 355, 295. (44) Bauer, D.; Schnering, H. G. v. Z. Anorg. Allg. Chem. 1968, 361, 259. (45)
- Schäfer, H.; Schnering, H. G. v.; Tillack, J.; Kuhnen, F.; Wöhrle, H.; Baumann, H. Z. Anorg. Allg. Chem. 1967, 353, 281.
- (46) Siepmann, R.; Schnering, H. G. v. Z. Anorg. Allg. Chem. 1968, 357, 289.
- (47) Guthrie, D. H.; Meyer, G.; Corbett, J. D. Inorg. Chem. 1981, 20, 1192.
 (48) Brown, I. D.; Brown, M. C.; Hawthorne, F. C. "BIDICS—Bond Index
- to the Determination of Inorganic Crystal Structures"; Institute for Materials Research, McMasters University: Hamilton, Ontario, Canada, 1972-1981.
- (49) Campana, C. F.; Vizi-Orosz, A.; Palyi, G.; Markó, L.; Dahl, L. F. Inorg. Chem. 1979, 18, 3054
- (50) Broll, A.; Simon, A.; Schnering, H. G. v.; Schäfer, H. Z. Anorg. Allg. Chem. 1969, 367, 1
- (51) Churchill, M. R.; Bau, R. Inorg. Chem. 1968, 7, 2606.
 (52) Ciani, G.; D'Alfonso, G.; Freni, M.; Romiti, P.; Sironi, A. J. Organomet.
- Chem. 1978, 157, 199.

clusters of the composition T_2M_2 (T = Mn, Re; M = Ga, In, Ge, Sn).^{53,54} More examples are known for nonplanar "butterfly" clusters of four metal atoms. The reviews by King,⁵⁵ Vahrenkamp,⁵⁶ Lewis and Johnson,⁵⁷ and Tachikawa and Muetterties⁵⁸ give references to some ten clusters with such tetranuclear cores in molecular inorganic compounds. Simon⁵⁹ has pointed out that condensed butterfly clusters can be regarded as building elements in many solid-state compounds such as Hf_3P_2 , Nb_8P_5 , or Mo_4P_3 . We wish to conclude that we too believe that the division in "solid-state" and "molecular" inorganic chemistry-caused by some differences in preparation and characterization methods and deepened by tradition-should be overcome at least as regards structural chemistry.60

Acknowledgment. We want to thank Dipl.-Chem. M. Möller and Dr. U. Flörke (Universität Dortmund) for the collection of the single-crystal diffractometer data and for electrical conductivity measurements. Professor R. Hoppe and Dr. G. Meyer (Universität Giessen) supported the magnetic measurements. We also acknowledge financial aid by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie.

Registry No. Re₂P₅, 80878-10-0.

Supplementary Material Available: Listings of structure factor amplitudes, anisotropic thermal parameters, and a Guinier powder pattern of Re₂P₅ (28 pages). Ordering information is given on any current masthead page.

- (53) Haupt, H.-J.; Preut, H.; Wolfes, W. Z. Anorg. Allg. Chem. 1978, 446, 105.
- Preut, H.; Haupt, H.-J. Acta Crystallogr., Sect. B 1980, B36, 678. King, R. B. Prog. Inorg. Chem. 1972, 15, 287. Vahrenkamp, H. Struct. Bonding (Berlin) 1977, 31, 1. (54)
- (55)
- (56)
- (57) Lewis, J.; Johnson, B. F. G. Gazz. Chim. Ital. 1979, 109, 271.
- Tachikawa, M.; Muetterties, E. L. Progr. Inorg. Chem. 1981, 28, 203. (58) Simon, A. Angew. Chem. 1981, 93, 23; Angew. Chem., Int. Ed. Engl. (59) 1981, 93, 1.
- (60) Chini, P. Gazz. Chim. Ital. 1979, 109, 225.

Contribution from the Departments of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, Southern University in New Orleans, New Orleans, Louisiana 70126, and University of Central Florida, Orlando, Florida 32816

Magnetic Properties and Molecular Structure of Copper(II) Complexes of **Pyrazinecarboxylic Acid**

CHERYL L. KLEIN,^{1a} RICHARD J. MAJESTE,^{1b} LOUIS M. TREFONAS,^{1c} and CHARLES J. O'CONNOR*^{1a}

Received August 27, 1981

Several copper complexes of pyrazinecarboxylic acid (HL = $C_4H_3N_2COOH$) have been prepared. The crystal structures of CuL₂ and CuL₂(H₂O)₂ were determined from single-crystal X-ray diffraction using counter methods, and the magnetic properties of these complexes plus the complex [Cu(HL)Cl₂]₂ were studied over the temperature range 6-300 K with an alternating force magnetometer. CuL₂(H₂O)₂ consists of six coordinated (distorted octahedral) copper(II) ions with L⁻ acting as a bidentate ligand and axially coordinated water molecules. CuL_2 is also a six-coordinate structure similar to that of $CuL_2(H_2O)_2$ but with the axial positions now occupied by the carboxylate oxygens of a neighboring molecule to form a structural linear chain. The magnetic properties for CuL₂ and CuL₂(H₂O)₂ indicate weak ferromagnetic interactions are present. The magnetic data for [Cu(HL)Cl₂]₂ show that the chlorine bridged dimer is antiferromagnetically coupled (g = 2.23, J/k = -8.79 K). Crystal data for $\text{CuL}_2(\text{H}_2\text{O})_2$: space group $P2_1/c$, Z = 2, a = 5.438 (1) Å, b = 10.880 (2) Å, c = 10.385 (2) Å, $\beta = 98.24$ (1)°, $V = 608.1 \text{ Å}^3$, 1023 reflections. Crystal data for CuL_2 : space group $P2_1/c$, Z = 2, a = 5.0340 (4) Å, b = 15.3316 (12) Å, c = 7.0707 (9) Å, $\beta = 106.627$ (9)°, $V = 523.3 \text{ Å}^3$, 869 reflections.

Introduction

Pyrazine is an excellent bridging ligand when coordinated to transition metals and has been extensively studied as an active ligand in the course of electron-transfer and magnetochemistry research.²⁻¹² Binuclear and polynuclear systems

which have a bridging pathway composed of a conjugated bonding network are of interest to experimental magneto-

- (5) Meyer, T. J. Acc. Chem. Res. 1978, 11 94.

⁽a) University of New Orleans. (b) Southern University in New Or-(1) leans. (c) University of Central Florida.

⁽²⁾ Creutz, C.; Taube, H. J. Am. Chem. Soc. 1969, 91, 3988; 1973, 95, 1086.

Beattie, J.; Hush, N. S.; Taylor, P. R. Inorg. Chem. 1976, 15, 992. Meyer, T. J.; Powers, M. J.; Salmon, D. J.; Callahan, R. W. J. Am. Chem. Soc. 1977, 99, 1064. (3) (4)

chemists because this type of bridging ligand permits a study of the mechanism of magnetic coupling over extended distances. Carboxylate ligands as well as pyrazine ligands are equally capable of bridging and providing exchange pathways when paramagnetic metals are involved. By coordination of one oxygen atom to each metal, a three-atom bridge may be formed as in the binuclear complexes of Cu(II),¹³⁻¹⁵ Cu(I),¹⁶ Co(II),^{17,18} Rh(II),^{19,20} Cr(II),²¹ Mo(II),^{22,23} Pd(II),²⁴ Ru(II),²⁵ and Ni(II).^{26,27} Magnetic exchange through single atom bridges has been much more thoroughly studied.²⁷ From these studies, it has been shown through empirical tabulations that the magnitude of the bridging angle correlates with the magnitude of the antiferromagnetic interaction for copper(II) complexes.28

In our laboratory, we have been studying the effects of substituted pyrazine ligands on the bonding and magnetic properties of some divalent transition-metal complexes.²⁹⁻³¹ In this work we have synthesized an unusual series of copper(II) complexes in which copper(II), when mixed with pyrazinecarboxylic acid (HL) under various experimental conditions, forms a dimer, a weakly coordinated one-dimensional chain, and a monomeric complex crystallizing in a hydrogen-bonded lattice with stronger hydrogen bonds along one dimension. The dimer complex has the formula $[Cu(HL)Cl]_2$, where HL = pyrazinecarboxylic acid ($C_4H_3N_2COOH$). The bridge is formed by two shared chlorine ligands,²⁹ and the complex exhibits antiferromagnetic behavior. The weakly coordinated linear chain complex has the formula CuL_2 with the bridge consisting of a three-atom carboxylate unit of the ligand. This complex exhibits weak ferromagnetic interactions. The third complex has the formula $CuL_2(H_2O)_2$. The axial water molecules are hydrogen bonded to the neighboring complexes in three dimensions but with a shorter hydrogenbonded pathway along one dimension. The hydrogen-bonded complex also shows weak ferromagnetic behavior. We report on the X-ray crystal structures of CuL_2 and $CuL_2(H_2O)_2$ and the powder magnetic susceptibility measurements from 6 to

- (6) Baumann, J. A.; Salmon, D. J.; Wilson, S. T.; Meyer, T. J. Inorg. Chem. 1979. 18 2472
- (7)Charreck, P. W.; Goldstein, M.; McPartlin, E. M.; Unsworth, W. E. J. Chem. Soc. D 1971, 1634.
- Inoue, M.; Kubo, M. Coord. Chem. Rev. 1976, 21, 1. (8)
- (9) Richardson, H. W.; Wasson, J. R.; Hatfield, W. E. Inorg. Chem. 1977, 16.484.
- (10) Blake, A. B.; Hatfield, W. E. J. Chem. Soc., Dalton Trans. 1978, 863.
- (11) Haddad, M. S.; Hendrickson, D. N.; Cannady, J. P.; Drago, R. S.; Bieckza, D. S. J. Am. Chem. Soc. 1979, 101 898.
- (12) Darriet, J.; Haddad, M. S.; Duesler, E. N.; Hendrickson, D. N. Inorg. Chem. 1979, 18, 2679.
- (13) Van Niekerk, J. H.; Schoenig, F. R. L. Acta Crystallogr. 1953, 6, 227.
 (14) Doedens, R. J. Prog. Inorg. Chem. 1976, 21, 209 and references cited.
 (15) Sinn, E. Coord. Chem. Rev. 1970, 5, 313 and references cited.
- (16) Drew, M. G. B.; Edwards, D. A.; Richards, R. J. Chem. Soc., Dalton Trans. 1977, 229.
- (17) Catterick, J.; Hursthouse, M. B.; Thornton, P.; Weich, A. J. J. Chem. Soc., Dalton Trans. 1977, 223, and references cited.
- (18) Drew, J.; Hursthouse, M. B.: Thornton, D.; Welch, A. J. J. Chem. Soc., Chem. Commun. 1973, 53
- Cotton, F. A.; Felthouse, T. R. Inorg. Chem. 1980, 19, 323. Aoki, K.; Yamazaki, II. J. Chem. Soc., Chem. Commun. 1980, 186. (19)
- (20)(21) Cotton, F. A.; deBoer, B. G.; LaPrade, M. D.; Pipal, J. R.; Ucko, D. A. Acta Crystallogr., Sect. B 1971, B27, 1664.
- (22) Cotton, F. A.; Norman, J. G., Jr. J. Am. Chem. Soc. 1972, 94, 5697.
 (23) Clegg, W.; Garner, C. D.; Parkes, S.; Walton, I. B. Inorg. Chem. 1979,
- 18, 2250. (24) Churchill, M. R.; Mason, R. Nature (London) 1964, 204, 777.
- Bino, A.; Cotton, F. A.; Felthouse, T. R. Inorg. Chem. 1979, 18, 2599.
- (26) Butcher, R. J.; O'Connor, C. J.; Sinn, E., Inorg. Chem. 1981, 20, 3486.
- (27) Hodgson, D. J. Prog. Inorg. Chem. 1975, 19, 173.
 (28) Crawford, V. H.; Richardson, H. W.; Wasson, J. R.; Hodgson, D. J.; Hatfield, W. E. Inorg. Chem. 1976, 15, 2107.
- (29) Klein, C. L.; Trefonas, L. M.; O'Connor, C. J.; Majeste, R. J. Cryst. Struct. Commun. 1981, 10, 891.
- (30)
- O'Connor, C. J.; Sinn, E. Inorg. Chem. 1981, 20, 545. O'Connor, C. J.; Klein, C. L.; Majeste, R. J.; Trefonas, L. M. Inorg. (31)Chem. 1982, 21, 64.

Table I. Experimental Details for [CuL_a] and [CuL_a(H_aO)_a]

	$[Cu(C_{5}H_{3}N_{2}O_{2})_{2}]$	$ \begin{array}{c} \left[\text{Cu}(\text{C}_{5}\text{H}_{3}\text{N}_{2}\text{O}_{2})_{2} \right] \\ \left(\text{H}_{2}\text{O}_{2} \right] \end{array} $
M _r of asymmetric unit	186.63	204.65
space group (Z)	P2,/c	P2,/c
extinctions	$h0\dot{l} \ (l=2n+1)$	$h0\dot{l}(l=2n+1)$
	$0k0 \ (k = 2n + 1)$	0k0(k = 2n + 1)
cell constants	a = 5.0340 (4) Å, b = 15.3316 (12) c = 7.0707 (9) Å, $a = 106 627 (0)^{\circ}$	a = 5.438 (1) Å, b = 10.880 (2) Å, c = 10.385 (2) Å,
17 8 3	$\beta = 100.027(9)$	$\beta = 98.24(1)$
<i>V</i> , A ⁻	523.3	608.1
radiation	Cu K α , $\lambda = 1.5405$	Cu K α , $\lambda = 1.5405$ Å
$\max 2\theta$, deg	145	140
no. of refletns collected	1148	1160
no. of refletns above σ	869	1023
calcd density, g cm ⁻³	1.97	1.89
measd density, g cm ⁻³	1.99 (1) (flotation in CH ₂ I/CCl ₄)	1.90 (1)
R_F for all reflectns above σ	0.069	0.074

300 K for CuL_2 , $CuL_2(H_2O)_2$, and $[Cu(HL)Cl_2]_2$.

Experimental Section

Synthesis. Preparation of the Complexes CuL₂ and CuL₂(H₂O)₂, Where HL = Pyrazinecarboxylic Acid. A 5-mmol sample of pyrazinecarboxylic acid was dissolved in approximately 150 mL of H₂O. A 5-mmol sample of hydrated copper(II) chloride was dissolved in 25 mL of H_2O . The solutions were mixed, and dark blue platelike crystals of CuL₂ suitable for X-ray analysis were deposited after standing overnight. Medium blue crystals of $CuL_2(H_2O)_2$ were deposited a few days later.

Preparation of the Complex [Cu(HL)Cl2]2. A 25-mmol sample of pyrazinecarboxylic acid was dissolved in 30 mL of concentrated hydrochloric acid. A 25-mmol sample of hydrated copper(II) chloride was dissolved in 40 mL of H₂O. The two solutions were mixed, and green platelike crystals were deposited overnight. For each of the experiments described in this report, the crystals used for X-ray and magnetic susceptibility studies were obtained from the same preparation.

Crystal Structure Determination. The structure determination of [Cu(HL)Cl₂]₂ has been reported previously.²⁹ Single crystals of CuL₂ and $CuL_2(H_2O)_2$ having no dimension greater than 0.35 mm were selected for X-ray analysis. The crystals were mounted on a General Electric XRD-490 fully automated diffractometer. Extinctions of k odd for (0k0) and l odd for (h0l) characterized the space group as $P2_1/c$ for both complexes.

In the case of CuL_2 , lattice constants were determined by a least-squares fit of 70 carefully measured 2θ values of 2θ greater than 100° under fine conditions (1° takeoff angle and 0.05° slit). The resultant lattice constants and their estimated standard deviations (esd's) are listed in Table I. Three-dimensional intensity data were collected by the stationary-crystal, stationary-counter method using balanced nickel and cobalt filters with copper K α radiation.

Lattice constants for $CuL_2(H_2O)_2$ were determined by a leastsquares fit of 26 carefully measured 2θ values of the copper K α_1 and $K\alpha_2$ doublet for reflections with 2θ greater than 66°. The resultant lattice constants and their esd's are listed in Table I.

For both CuL_2 and $CuL_2(H_2O)_2$, measurement of the experimental density indicated that there were two molecules in the cell, and therefore the copper atom occupied special positions within the cell. With the copper atoms at 0, 0, 0 and 0, 1/2, 1/2, a Fourier map was phased and used to find the coordinates of the other nonhydrogen The structures were refined with a block-diagonal leastatoms. squares³² program with isotropic temperatures factors and unit weights

⁽³²⁾ The conventional reliability index $R = \sum w ||kF_0| - |F_0|| / \sum w |kF_0|$ is cited throughout the paper. Scattering factors for carbon, nitrogen, oxygen, and copper are taken from the paper: D. T.; Cromer, Waber, J. T. Acta Crystallogr. 1965, 18, 104. That for hydrogen is from: "International Tables for X-ray Chrystallography"; Kynoch Press: Birmingham, England, 1968; Vol. III.

Table II. Final Least-Squares Coordinates with Estimated Standard Deviations for CuL_2 and $CuL_2(H_2O)_2$

tom	x/a	y/b	z/c	atom	x/a	y/b	z/c	
			A. CuL	(H O)				
` 11	1 0000 (0)	0.5000 (0)	0 5000 (0)	C5	0.6516 (14)	0.8483 (6)	0 5365 (7)	
	1 2214 (0)	0.5634(4)	0.3704(4)	C6	0.0010(14) 0.7108(13)	0.0405 (0)	0.5503 (7)	
20 20	1.2217(9)	0.3034(4)	0.3794(4)	C0	1 1950 (13)	0.7270(0)	0.3002(0)	
)9)10	1.2900 (11)	0.7310(4)	0.2703(3)		1.1039 (12)	0.0770(3)	0.3403(0)	
10	0.6905 (9)	0.4761(4)	0.3133 (5)	H3	1.0038 (0)	0.9125(0)	0.3262(0)	
1	0.8863 (10)	0.6750(5)	0.4979 (5)	H5	0.5212(0)	0.8855 (0)	0.5847 (0)	
14	0.7526 (13)	0.9173 (5)	0.4522 (6)	H6	0.6406 (0)	0.6778 (0)	0.6252 (0)	
22	0.9948 (12)	0.7419 (5)	0.4133 (6)	H10	0.8000 (0)	0.5300(0)	0.2650(0)	
3	0.9232 (14)	0.8634 (6)	0.3912 (7)	H101	0.5200 (0)	0.5050 (0)	0.2800 (0)	
			B. C	uL.				
Cu	1.0000 (0)	0.0000(0)	0.0000 (0)	C5	0.3422 (15)	-0.2293(5)	0.3183 (11)	
28	0.3309(9)	0.0689 (3)	0.1051(7)	C6	0.1519 (13)	-0.1755 (4)	0.1943 (10)	
	0.7710(9)	0.0550 (3)	0.2845 (8)	C7	0.5350 (14)	0.0277(4)	0.2227(10)	
J1	0.2134 (11)	-0.0936(3)	0.1710(8)	H3	$0.8277 (**)^{\alpha}$	-0.0972(51)	0.4685 (**)	
J4	0.5916 (13)	-0.2017 (4)	0.4253(9)	H5	0 3038 (**)	-0.2955 (45)	0 3355 (**)	
י. ר	0.4683(13)	-0.0641(4)	0.7200(0)	HG	-0.0314 (**)	0.2923(10)	0.1475 (**)	
1	0.6507(13)	$\sim 0.0041(4)$	0.2713(10) 0.4014(10)	110	-0.0314()	-0.1724 (47)	0.1720 ()	
	20 m 20 m	x/a x/a	x/a y/b y/b y/b y/b </td <td>x/a$y/b$$z/c$Nu1.0000 (0)0.5000 (0)0.5000 (0)$b8$1.2214 (9)0.5634 (4)0.3794 (4)$b9$1.2986 (11)0.7318 (4)0.2705 (5)$b10$0.6905 (9)0.4761 (4)0.3133 (5)$b11$0.8863 (10)0.6750 (5)0.4979 (5)$b14$0.7526 (13)0.9173 (5)0.4522 (6)$b22$0.9948 (12)0.7419 (5)0.4133 (6)$b23$0.9232 (14)0.8634 (6)0.3912 (7)$b11$0.0000 (0)0.0000 (0)0.0000 (0)$b20$0.7710 (9)0.0550 (3)0.2845 (8)$b11$0.2134 (11)$-0.02017 (4)$0.4253 (9)$b22$0.4683 (13)$-0.0641 (4)$0.2713 (10)$b23$0.6507 (13)$-0.1182 (5)$0.4014 (10)</td> <td>x/a y/b z/c $atom$ A. CuL₂(H₂O)₂ A. CuL₂(H₂O)₂ A. CuL₂(H₂O)₂ bu 1.0000 (0) 0.5000 (0) 0.5000 (0) C5 ba 1.2214 (9) 0.5634 (4) 0.3794 (4) C6 b9 1.2986 (11) 0.7318 (4) 0.2705 (5) C7 b10 0.6905 (9) 0.4761 (4) 0.3133 (5) H3 b11 0.8863 (10) 0.6750 (5) 0.4979 (5) H5 b14 0.7526 (13) 0.9173 (5) 0.4522 (6) H6 b12 0.9948 (12) 0.7419 (5) 0.4133 (6) H10 b13 0.9232 (14) 0.8634 (6) 0.3912 (7) H101 b14 0.7510 (9) 0.0050 (3) 0.2845 (8) C7 b11 0.2134 (11) -0.0936 (3) 0.1710 (8) H3 b14 0.5916 (13) -0.2017 (4) 0.4253 (9) H5 b14 0.5916 (13) -0.0641 (4) 0.2713 (10) H6 b14 0.5916 (13)</td> <td>$x/a$$y/b$$z/c$$atom$$x/a$A. $CuL_2(H_2O)_2$A. $CuL_2(H_2O)_2$A. $CuL_2(H_2O)_2$A. $CuL_2(H_2O)_2$A. $CuL_2(H_2O)_2$Du 1.0000 (0)0.5000 (0)0.5000 (0)C50.6516 (14)0.881.12214 (9)0.5634 (4)0.3794 (4)C60.7198 (13)091.2986 (11)0.7318 (4)0.2705 (5)C71.1859 (12)D100.6905 (9)0.4761 (4)0.3133 (5)H31.0038 (0)D10.8863 (10)0.6750 (5)0.4979 (5)H50.5212 (0)B. CuL2OUB. CuL_2D20.0000 (0)0.0000 (0)0.0000 (0)C50.3422 (15)OUD. $0.0000 (0)$0.0000 (0)C50.3422 (15)D2D. $0.0000 (0)$D. $0.0000 (0)$D. $0.0000 (0)$D. $0.0000 (0)$Colspan="4">CuL2D2D. $0.0000 (0)$D. $0.0000 (0)$Colspan="4">CuL2D2D. $0.0000 (0)$D. $0.0000 (0)$Colspan="4">CuL2D2D. $0.0000 (0)$D. $0.0000 (0)$D. $0.0000 (0)$D. $0.0000 (0)$CuL2D</td> <td>iom$x/a$$y/b$$z/c$atom$x/a$$y/b$A. $CuL_2(H_2O)_2$A. $CuL_2(H_2O)_2$A. $CuL_2(H_2O)_2$bu1.0000 (0)0.5000 (0)0.5000 (0)C50.6516 (14)0.8483 (6)0.8483 (4)0.3794 (4)C60.7198 (13)0.7270 (6)0.991.2986 (11)0.7318 (4)0.2705 (5)C71.1859 (12)0.6776 (5)0.10 0.6905 (9)0.4761 (4)0.3133 (5)H31.0038 (0)0.9125 (0)0.4863 (10)0.6750 (5)0.4979 (5)H50.5212 (0)0.8855 (0)0.4440.7526 (13)0.9173 (5)0.4522 (6)H60.6406 (0)0.6778 (0)CuL_2B. CuL_2B. CuL_2B. CuL_2B. CuL_2Du1.0000 (0)0.0000 (0)0.0000 (0)C50.3422 (15)-0.2293 (5)0.33309 (9)0.0689 (3)0.1051 (7)C60.1519 (13)-0.1755 (4)0.990.7710 (9)0.0550 (3)0.2845 (8)C70.5350 (14)0.0277 (4)140.5916 (13)-0.2017 (4)0.4253 (9)H50.3038 (**)-0.2955 (45)1.4683 (13)-0.0641 (4)0.2713 (10)H6-0.0314 (**)-0.1924 (47)30.6507 (13)-</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	x/a y/b z/c Nu1.0000 (0)0.5000 (0)0.5000 (0) $b8$ 1.2214 (9)0.5634 (4)0.3794 (4) $b9$ 1.2986 (11)0.7318 (4)0.2705 (5) $b10$ 0.6905 (9)0.4761 (4)0.3133 (5) $b11$ 0.8863 (10)0.6750 (5)0.4979 (5) $b14$ 0.7526 (13)0.9173 (5)0.4522 (6) $b22$ 0.9948 (12)0.7419 (5)0.4133 (6) $b23$ 0.9232 (14)0.8634 (6)0.3912 (7) $b11$ 0.0000 (0)0.0000 (0)0.0000 (0) $b20$ 0.7710 (9)0.0550 (3)0.2845 (8) $b11$ 0.2134 (11) $-0.02017 (4)$ 0.4253 (9) $b22$ 0.4683 (13) $-0.0641 (4)$ 0.2713 (10) $b23$ 0.6507 (13) $-0.1182 (5)$ 0.4014 (10)	x/a y/b z/c $atom$ A. CuL ₂ (H ₂ O) ₂ A. CuL ₂ (H ₂ O) ₂ A. CuL ₂ (H ₂ O) ₂ bu 1.0000 (0) 0.5000 (0) 0.5000 (0) C5 ba 1.2214 (9) 0.5634 (4) 0.3794 (4) C6 b9 1.2986 (11) 0.7318 (4) 0.2705 (5) C7 b10 0.6905 (9) 0.4761 (4) 0.3133 (5) H3 b11 0.8863 (10) 0.6750 (5) 0.4979 (5) H5 b14 0.7526 (13) 0.9173 (5) 0.4522 (6) H6 b12 0.9948 (12) 0.7419 (5) 0.4133 (6) H10 b13 0.9232 (14) 0.8634 (6) 0.3912 (7) H101 b14 0.7510 (9) 0.0050 (3) 0.2845 (8) C7 b11 0.2134 (11) -0.0936 (3) 0.1710 (8) H3 b14 0.5916 (13) -0.2017 (4) 0.4253 (9) H5 b14 0.5916 (13) -0.0641 (4) 0.2713 (10) H6 b14 0.5916 (13)	x/a y/b z/c $atom$ x/a A. $CuL_2(H_2O)_2$ A. $CuL_2(H_2O)_2$ A. $CuL_2(H_2O)_2$ A. $CuL_2(H_2O)_2$ A. $CuL_2(H_2O)_2$ Du 1.0000 (0)0.5000 (0)0.5000 (0)C50.6516 (14)0.881.12214 (9)0.5634 (4)0.3794 (4)C60.7198 (13)091.2986 (11)0.7318 (4)0.2705 (5)C71.1859 (12)D100.6905 (9)0.4761 (4)0.3133 (5)H31.0038 (0)D10.8863 (10)0.6750 (5)0.4979 (5)H50.5212 (0)B. CuL2OUB. CuL_2 D20.0000 (0)0.0000 (0)0.0000 (0)C50.3422 (15)OUD. $0.0000 (0)$ 0.0000 (0)C50.3422 (15)D2D. $0.0000 (0)$ D. $0.0000 (0)$ D. $0.0000 (0)$ D. $0.0000 (0)$ Colspan="4">CuL2D2D. $0.0000 (0)$ D. $0.0000 (0)$ Colspan="4">CuL2D2D. $0.0000 (0)$ D. $0.0000 (0)$ Colspan="4">CuL2D2D. $0.0000 (0)$ D. $0.0000 (0)$ D. $0.0000 (0)$ D. $0.0000 (0)$ CuL2D	iom x/a y/b z/c atom x/a y/b A. $CuL_2(H_2O)_2$ A. $CuL_2(H_2O)_2$ A. $CuL_2(H_2O)_2$ bu1.0000 (0)0.5000 (0)0.5000 (0)C50.6516 (14)0.8483 (6)0.8483 (4)0.3794 (4)C60.7198 (13)0.7270 (6)0.991.2986 (11)0.7318 (4)0.2705 (5)C71.1859 (12)0.6776 (5)0.10 0.6905 (9)0.4761 (4)0.3133 (5)H31.0038 (0)0.9125 (0)0.4863 (10)0.6750 (5)0.4979 (5)H50.5212 (0)0.8855 (0)0.4440.7526 (13)0.9173 (5)0.4522 (6)H60.6406 (0)0.6778 (0)CuL_2B. CuL_2 B. CuL_2 B. CuL_2 B. CuL_2 Du1.0000 (0)0.0000 (0)0.0000 (0)C50.3422 (15)-0.2293 (5)0.33309 (9)0.0689 (3)0.1051 (7)C60.1519 (13)-0.1755 (4)0.990.7710 (9)0.0550 (3)0.2845 (8)C70.5350 (14)0.0277 (4)140.5916 (13)-0.2017 (4)0.4253 (9)H50.3038 (**)-0.2955 (45)1.4683 (13)-0.0641 (4)0.2713 (10)H6-0.0314 (**)-0.1924 (47)30.6507 (13)-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^a The two asterisks refer to a standard deviation greater than 99.

Figure 1. Schematic drawing of one molecular unit of $CuL_2(H_2O)_2$ including bonding distances and angles.

to a value of R = 0.152 for CuL₂ and R = 0.157 for CuL₂(H₂O)₂. A difference electron density map was calculated to find the hydrogen atom coordinates for both structures. Refinements continued with anisotropic temperature factors for the nonhydrogen atoms.

Addition of an anomalous dispersion correction in the copper scattering factor curve and further refinement of all nonspecial position coordinates and temperature factors led to a final reliability index of R = 0.069 for CuL₂. The coordinates and isotropic temperature factors for the CuL₂(H₂O)₂ hydrogen atoms were not allowed to vary. Continued refinement led to a final R = 0.074.

Magnetic Measurements. Magnetic susceptibilities were measured on an alternating force magnetometer $(AFM)^{31,33}$ from 6 to 300 K. The calibration of the instrument and measurement techniques are described elsewhere.³¹

Results

The final least-squares coordinates with estimated standard deviations for each parameter are summarized for CuL_2 - $(H_2O)_2$ and CuL_2 in Table II. Table IIC,D (supplementary material) contains the final least-squares coordinates and thermal parameters with estimated standard deviations for these complexes. The estimated standard deviations (esd's) for Cu–O and Cu–N distances are 0.005 Å and 0.2° for angles around the Cu atoms in both complexes. Figure 1 shows a schematic drawing of one molecular unit of $CuL_2(H_2O)_2$ while Figure 2 shows a schematic drawing of one molecular unit of CuL_2 . Figure 3 shows three consecutive molecular units with the bridging distance and angles indicated for CuL_2 .

Each pyrazinecarboxylic acid ligand has four possible coordination sties of which two, N1 and O8, involve coordination

Figure 2. Schematic drawing of one molecular unit of CuL_2 including bonding distances and angles.

to the copper atom in $CuL_2(H_2O)_2$. The coordination of two water molecules to a single copper atom results in a monomeric unit with a distorted octahedral coordination sphere. The largest single contribution to the distortion is evidenced by the O8-Cu-N1 angle resulting from the formation of the fivemembered ring required at the metal atom by the bidentate ligand (82.9 (2)° in $CuL_2(H_2O)_2$ and 84.5 (2)° in CuL_2).

While three sites in the pyrazinecarboxylate ligand are coordinated in CuL₂, N1 and O8 are coordinated to one copper atom and O9 is weakly coordinated to an equivalent copper atom that is translated one unit cell in the x direction, thus forming a one-dimensional chain through a carboxylate bridge. There are two infinite chains in the unit cell, and each propogates along the (100) axis as shown in Figure 3. Although the Cu-Cu distance between the chains, 3.53 (1) Å, is less than the Cu-Cu distance within a single chain, 5.037 (1) Å, there is no apparent interchain-exchange pathway. There also are no nonhydrogen contact distances less than 3.403 (1) Å between the two chains, and, therefore, the observed magnetic exchange is expected to be solely intrachain exchange over the temperature region studied in this report. The orientation of neighboring chains of CuL_2 in the crystalline lattice is illustrated in Figure 4, which shows a packing diagram of CuL_2 .

Figure 3. Schematic drawing of three consecutive molecular units of CuL_2 including bridging distances and angles.

Figure 4. Stereoview packing diagram for CuL₂.

Figure 5. Inverse magnetic susceptibility and effective magnetic moment plotted as a function of temperature for CuL_2 . The line through the points is the best fit as described in text.

The copper atom in CuL_2 is hexacoordinate. The axial coordination is due to a weak coordination of the copper ion with the carboxylate group of a neighboring molecule, thus forming a distorted octahedral coordination sphere. The coordination distances for N1 and O8 in both complexes are similar to those previously reported for copper(II) complexes whereas the Cu–O9 coordination distance of 2.72 (1) Å is considerably longer than the usual carbonyl oxygen to copper distance of 1.94 (1) Å.³⁴

The average conjugated C–C bond distances (1.385 ± 0.005) and 1.375 ± 005 Å for CuL₂(H₂O)₂ and CuL₂, respectively) and the average conjugated C–N bond distances (1.330 and 1.335 ± 0.015 Å) compare favorably to the accepted literature

Figure 6. Inverse magnetic susceptibility and effective magnetic moment plotted as a function of temperature for $CuL_2(H_2O)_2$. The line through the points is the best fit as described in text.

Figure 7. ORTEP diagram of a dimer unit of [Cu(HL)Cl₂]₂.

values³⁵ (1.396 and 1.334 Å). The averages of the NCC angles (121.1 \pm 2.0 and 121.3 \pm 1.6°) also compare favorably to the literature value of 122.4 \pm 1°. The C7–O9 carbonyl bond distances (1.22 \pm 0.02 and 1.22 \pm 0.02 Å) compare favorably with the 1.215-Å³⁴ literature value while the C7–O8 distances (1.30 \pm 0.02 and 1.29 \pm 0.02 Å) are shorter than the comparable literature references with the usual distance of 1.322 Å.

Magnetic susceptibility measurements were carried out on these complexes in order to determine the extent of magnetic interactions which are expected to occur in these complexes. The magnetic data of polycrystalline samples of CuL_2 , $Cu-L_2(H_2O)_2$, and $(Cu(HL)Cl_2)_2$ are tabulated in Table III

^{(34) &}quot;Molecular Structures and Dimensions", Interatomic Distances, 1960– 1965; Vol. A1.

⁽³⁵⁾ Spec. Publ.-Chem. Soc. 1958, No. 11; Suppl. 1964.

Table IV. Magnetic Parameters for CuL₂, CuL₂(H₂O)₂, and [Cu(HL)Cl₂]₂

compd	g	Θ, Κ	J/k, K	model
$\begin{array}{c} CuL_{2} \\ CuL_{2} \\ CuL_{2} \\ CuL_{2}(H_{2}O)_{2} \\ CuL_{2}(H_{2}O)_{2} \\ [Cu(HL)Cl_{2}]_{2} \end{array}$	$2.11 \pm 0.01 2.115 \pm 0.010 2.15 \pm 0.01 2.146 \pm 0.010 2.23 \pm 0.01$	0.59 ± 0.02 0.30 ± 0.02	$\begin{array}{c} 0.60 \pm 0.02 \\ 0.33 \pm 0.02 \\ -8.79 \pm 0.05 \end{array}$	$S = \frac{1}{2}$, Curie-Weiss $S = \frac{1}{2}$, Heisenberg chain $S = \frac{1}{2}$, Curie-Weiss $S = \frac{1}{2}$, Heisenberg chain $S = \frac{1}{2}$, Dimer

(supplementary material) and are plotted in Figures 5–7. Figures 5 and 6 are plotted as inverse susceptibility and effective magnetic moment as a function of temperature. Since the inverse susceptibility plot is linear as a function of temperature, the Curie-Weiss Law (eq 1) was used in fits of the data of these complexes.

$$\chi = Ng^{2}\mu_{\rm B}^{2}S(S+1)/3k(T-\theta)$$
(1)

The lines through the inverse susceptibility data points in Figures 5 and 6 are the Curie–Weiss fits of the data with $S = \frac{1}{2}$ for copper(II). The results of the fit are shown in Table IV. The increase of the effective magnetic moment at low temperatures and the positive value of the Weiss constant for both CuL₂ and CuL₂(H₂O)₂ are indicative of ferromagnetic coupling along the structural linear chain. The molecular field exchange constant may be obtained from the values of theta extrapolated for the high-temperature regions of the data in the Curie–Weiss fit.³³ The molecular field value of J/k for an $S = \frac{1}{2}$ linear chain is equal to the Weiss constant.

There is no exact solution to the Van Vleck equation for a one-dimensional magnetic chain, however, the series expansion for the S = 1/2 Heisenberg ferromagnetic linear chain has been calculated by Baker et al.³⁶ The magnetic data for both CuL₂ (structural linear chain) and CuL₂(H₂O)₂ (hydrogen-bonded linear chain, vide infra) were fit to Baker's series expansion, and the result of this fit is shown as the smooth curve through the effective magnetic moment data in Figures 5 and 6.

The use of the linear-chain model to fit these data is very tentative. While both Curie–Weiss and the linear-chain fits are consistent with ferromagnetic interactions, the interaction parameters are very small and the moment curve shows an increase at only the lowest measured temperatures. It will be necessary to analyze the magnetic properties of these complexes at much lower temperatures if the appropriate magnetic models are to be assigned with any certainty.

 $[Cu(HL)Cl_2]_2$ crystallizes in space group $P2_1/c$ and has the dimer structure illustrated in Figure 7. The details of this structure are reported elsewhere.²⁹ Figure 8 is a plot of the molar susceptibility which is indicative of strong antiferromagnetic coupling within the structural dimer of $[Cu(HL)-Cl_2]_2$.

For a molecule with two interacting paramagnetic centers, the Heisenberg-Dirac-Van Vleck exchange Hamiltonian is written as eq 2. Substitution of this operator into the Van

$$\mathcal{H} = -2JS_1 \cdot S_2 \tag{2}$$

Vleck equation with $S_1 = S_2 = 1/2$ for a copper(II) basis set yields the Bleaney-Bowers equation³⁷ for the magnetic susceptibility:

$$\chi = \frac{Ng^2 \mu_{\rm B}^2}{kT} \frac{2e^x}{1+3e^x}$$
(3)

where x = -2J/kT. The line through the points in Figure 8

Figure 8. Magnetic susceptibility plotted as a function of temperature for $[Cu(HL)Cl_2]_2$. The curve through the points is the best fit of the data to the copper(II) dimer equation.

Figure 9. Schematic diagram illustrating two types of bridging geometries common for copper(II) ions: (1) coplanar bridge and (2) perpendicular plane bridge.

is the Bleaney-Bowers fit for the dimer susceptibility with the parameters listed in Table IV.

Discussion

Copper(II) is well-known to distort from octahedral symmetry due to Jahn-Teller forces and to form tetragonally distorted octahedral six-coordinate complexes as well as square-planar four-coordinate and square-pyramidal five-coordinate complexes. As a result of these structures, two types of bridging geometries are possible for doubly bridged centrosymmetric copper(II) ions, as illustrated in Figure 9. These bridging geometries are coplanar bridging for four-, five-, and six-coordination (1) and perpendicular plane bridging for fiveand six-coordination (2). A linear correlation between magnetic coupling and the angle of the bridge has been demonstrated by empirical tabulation of the structural and magnetic parameters of complexes of type 1.²⁸ Recent empirical tabulations by Hatfield et al.^{38,39} indicate that complexes of type

⁽³⁶⁾ Baker, G. A., Jr.; Rushbrooke, G. S.; Gilbert, H. E. Phys. Rev. A 1964, 135, 1272.

⁽³⁷⁾ Bleaney, B.; Bowers, K. D. Proc. R. Soc. London, Ser. A 1952, 214, 451.

⁽³⁸⁾ Hatfield, W. E.; Weller, R. R.; Hall, J. W. Inorg. Chem. 1980, 19, 3825.

09

Figure 10. Unit cell projection on to the (h0l) plane of $CuL_2(H_2O)_2$ including hydrogen bonded distances and angles indicated in Table V.

2 (and possibly those of type 1 as well) appear to require a distance parameter in addition to the simple angular dependence. This observation is a result of their attempts to reconcile the magnetic exchange parameters and bridging geometries of an expanded set of complexes.

Each of the complexes reported here can be grouped into the second bridging category, illustrated in Figure 9. The magnetic exchange in $[Cu(HL)Cl_2]_2$ is propagated through a single atom bridge, while CuL_2 has an extended three-atom bridge and $CuL_2(H_2O)_2$ bridging involves hydrogen bonding. The dimer $[Cu(HL)Cl_2]_2$ has a perpendicular plane singleatom bridge which results in very strong antiferromagnetic coupling. In this complex, the average bridging angle (Cu-C1-Cu) is 87.3° and the internuclear copper-copper distance is 3.547(4) Å. The second complex, CuL_2 , is a perpendicular plane bridging complex with a direct three-atom carboxylate bridge which forms a linear chain along the *a* axis. There are no apparent structural interchain interactions in this complex, and the result is a fairly isolated one-dimensional unit in the **Table V.** Hydrogen-Bonded Interaction Distances (Å) and Angles (Deg) for $\operatorname{CuL}_2(\operatorname{H}_2O)_2^a$

a = 2.90(1)		b = 2.80(1)		
O10-H10	1.05 (1)	O8-H 10	1.88 (1)	
O10-H10	1.02 (1)	O9-H 10'	1.86 (1)	
c = 116	5.4 (3)	f = 134.1 (5)	
d = 108	8.1 (3)	g = 132.2 (2)	
e = 108	3.3 (4)			
H10-O10-H10	115.6 (3)	O9-H10'-O10	152.2 (3)	
08-H10-O10	161.1 (4)			

^a See Figure 10 for numbering scheme.

lattice. The Cu–O9-C7 bridging angle is $101.8 (5)^{\circ}$, and the entire pyrazine ligand is essentially planar. The copper-copper distance within the chain is 5.037 (1) Å.

The third complex $CuL_2(H_2O)_2$ involves a fairly extensive hydrogen-bonding network. This is illustrated schematically in Figure 10. There are, however, two distinct types of hydrogen bonds. The shorter H-bond pathway involves O10--O8 hydrogen bonding and a simple Cu-OH···O-Cu bridge. This pathway results in a one-dimensional chain along the *a* axis. The other pathway consists of O10---O9 contacts along

⁽³⁹⁾ Hatfield, W. E., paper presented at the American Chemical Society Mid-Atlantic Regional Meeting in Washington, D.C., Jan 1981; see Abstracts, No. 221.

(011) and (011) to complete the three-dimensional interaction. The secondary hydrogen-bonded contacts involve a five-atom rather than a three-atom bridge and are expected to have a smaller contribution to the overall magnetic exchange. These interaction distances and angles as well as other pertinent hydrogen-bonding distances and angles appear in Table V.

The nature of magnetic interactions propagated over extended distances has been an area of study and speculation over the past few years.⁴⁰⁻⁴³ The research of Hendrickson et al. indicate that there is no direct general relationship between the separation of the magnetic centers and the magnitude of the magnetic coupling.⁴¹⁻⁴³ More recently, Hendrickson, Stucky, et al. have also shown that saturated carbons as well as conjugated pathways are capable of propagating magnetic exchange.⁴⁴⁻⁴⁶ They observe magnetic coupling

- (42) Felthouse, T. R.; Duesler, E. N.; Christenson, A. T.; Hendrickson, D. N. Inorg. Chem. 1979, 18, 245.
- (43) Felthouse, T. R.; Hendrickson, D. N. Inorg. Chem. 1978, 17, 2636.
 (44) Franesconi, L. C.; Corbin, D. R.; Clauss, A. W.; Hendrickson, D. N.; Stucky, G. D. Inorg. Chem. 1981, 20, 2059.
- (45) Kramer, L. S.; Clauss, A. W.; Franesconic, L. C.; Corbin, D. R.; Hendrickson, D. N.; Stucky, G. D. Inorg. Chem. 1981, 20, 2070.

between magnetic centers separated by several angstroms and propagated over pathways which involve saturation carbons.⁴⁴ However, the efficiency of a given pathway appears to be stronger when there is a fully conjugated pathway in the bridging skeleton.

The copper(II) complexes of pyrazinecarboxylate reported here, and a previously reported copper(II) complex of pyrazinedicarboxylate,³¹ are additional examples of magnetic exchange propagated over extended distances. Moreover, these complexes show that ferromagnetic interactions may be propagated over extended distances. Lower temperature studies must be completed before the nature of the magnetic interactions in the lattice-coupled complexes can be unambiguously determined.

Registry No. CuL₂, 33135-89-6; CuL₂(H₂O)₂, 74172-03-5; [Cu-(HL)Cl₂]₂, 79900-51-9.

Supplementary Material Available: Listings of final least-squares coordinates with thermal parameters for CuL_2 and $CuL_2(H_2O)_2$ (Table IIC,D), magnetic data from 6 to 300 K for CuL₂, CuL₂(H₂O)₂, and [Cu(HL)Cl₂]₂ (Table III), and observed and calculated structure factor amplitudes for CuL₂ and CuL₂(H₂O)₂ (17 pages). Ordering information is given on any current masthead page.

(46) Franesconi, L. C.; Corbin, D. R.; Clauss, A. W.; Hendrickson, D. N.; Stucky, G. D. Inorg. Chem. 1981, 20, 2078.

Contribution from the Inorganic Chemistry Institute, University of Göttingen, Göttingen, West Germany, and the Department of Chemistry, Manchester University, Manchester, England M13 9PL

Preparation and Structural Characterization of Dipalladium(II) Tetrakis(6-methyl-2-oxypyridine), [Pd₂(mhp)₄]

WILLIAM CLEGG,*1a C. DAVID GARNER,*1b and M. HASSAN AL-SAMMAN1b

Received September 1, 1981

Palladium(II) acetate reacts with sodium 6-methyl-2-oxypyridine, Na(mhp), in CH₂Cl₂ to give a material of empirical formula Na₂Pd(mhp)₃(O₂CCH₃). Subsequent treatment of this material with methanol produces the dimeric complex $[Pd_2(mhp)_4]$. The dimer crystallizes in the space group Pbca, with a = 15.625 (2) Å, b = 16.126 (2) Å, c = 18.831 (2) Å, and Z = 8. Refinement, based on 3243 unique diffractometer data, gave R = 0.054. Four mhp ligands bridge a pair of palladium(II) atoms, which are separated by 2.546 (1) Å. The properties of this molecule are discussed with respect to those of other $[M_2(mhp)_4]$ complexes and the nature of the Pd(II)-Pd(II) interaction. $[Pd_2(mhp)_4]$ is considered to possess no net direct formal metal-metal bond.

Introduction

Complexes of the type $[M_2(mhp)_4]$, where M = Cr, Mo, $W^{2}_{,2}$ Ru³ or Rh^{4,5} and Hmhp = 6-methyl-2-hydroxypyridine, have been prepared and structurally characterized in the last few years. These complexes are of particular interest since they contain metal-metal bonds that are among the shortest observed for each metal. The molecules have approximate D_{2d} symmetry, with M-O and M-N bonds arranged trans to their own kind so that each metal atom is bonded to two oxygen and two nitrogen atoms as well as to the other metal atom.

(5) Cotton, F. A.; Felthouse, T. R. Inorg. Chem. 1981, 20, 584.

The positions of the two methyl groups at each end of the metal-metal bond effectively prevent the binding of additional axial ligands to the metal atoms.

Recently, we reported that, in the case of a dirhodium(II) center, it is possible for three mhp ligands to have their nitrogen atoms attached to one rhodium atom, with only one nitrogen atom bonded to the other rhodium atom.⁶ A twist distortion in the ligand arrangement about the Rh-Rh bond reduces the steric interactions of the three methyl groups at one end of the molecule and, simultaneously, allows one axial ligand to bind at the other end. We found that, in two such cases, mhp itself can act as the axial ligand: in $[Rh_2(mhp)_4(Hmhp)]$. $0.5C_7H_8$, a fifth mhp ligand, protonated at nitrogen, is attached through its oxygen atom; in [(Rh₂(mhp)₄)₂]·2CH₂Cl₂, two dimeric units are linked together, one bridging mhp ligand of each unit being also axially bound to the other unit through its oxygen atom. A similar 3:1 arrangement of mhp ligands

⁽⁴⁰⁾ Coffman, R. E.; Buettner, G. R. J. Chem. Phys. 1979, 83, 2387.
(41) Felthouse, T. R.; Duesler, E. N.; Hendrickson, P. N. J. Am. Chem. Soc. 1978, 100, 618

 ⁽a) University of Göttingen.
 (b) University of Manchester.
 (c) Cotton, F. A.; Fanwick, P. E.; Niswander, R. H.; Sekutowski, J. C. J.

Am. Chem. Soc. 1978, 100, 4725.

⁽a) Berry, M.; Garner, C. D.; Hillier, I. H.; MacDowell, A. A.; Clegg, W. Inorg. Chim. Acta 1981, 53, L61. (b) Clegg, W. Acta Crystallogr., Sect. B 1980, B36, 3112

⁽a) Berry, M.; Garner, C. D.; Hillier, I. H.; MacDowell, A. A.; Clegg, W. J. Chem. Soc., Chem. Commun. 1980, 494. (b) Clegg, W. Acta Crystallogr., Sect. B 1980, B36, 2437.

Berry, M.; Garner, C. D.; Hillier, I. H.; Clegg, W. Inorg. Chim. Acta (6) 1980. 45. L.209.